Embedded C Questions and Answers
Preprocessor
1. Using the #define statement, how would you declare a manifest constant that returns the number of seconds in a year? Disregard leap years in your answer.
#define SECONDS_PER_YEAR
(60 * 60 * 24 * 365)UL
I'm looking for several things here:
- Basic knowledge of the #define syntax (for example, no semi-colon at the end, the need to parenthesize, and so on)
- An understanding that the pre-processor will evaluate constant expressions for you. Thus, it is clearer, and penalty-free, to spell out how you are calculating the number of seconds in a year, rather than actually doing the calculation yourself
- A realization that the expression will overflow an integer argument on a 16-bit machine-hence the need for the L, telling the compiler to treat the variable as a Long
- As a bonus, if you modified the expression with a UL (indicating unsigned long), then you are off to a great start. And remember, first impressions count!
2. Write the "standard" MIN macro-that is, a macro that takes two arguments and returns the smaller of the two arguments.
#define MIN(A,B)
((A)
<
= (B) ? (A) : (B))
The purpose of this question is to test the following:
- Basic knowledge of the #define directive as used in macros. This is important because until the inline operator becomes part of standard C, macros are the only portable way of generating inline code. Inline code is often necessary in embedded systems in order to achieve the required performance level
- Knowledge of the ternary conditional operator. This operator exists in C because it allows the compiler to produce more optimal code than an if-then-else sequence. Given that performance is normally an issue in embedded systems, knowledge and use of this construct is important
- Understanding of the need to very carefully parenthesize arguments to macros
- I also use this question to start a discussion on the side effects of macros, for example, what happens when you write code such as:
least = MIN(*p++, b);
3. What is the purpose of the preprocessor directive #error?
Either you know the answer to this, or you don't. If you don't, see Reference 1. This question is useful for differentiating between normal folks and the nerds. Only the nerds actually read the appendices of C textbooks to find out about such things. Of course, if you aren't looking for a nerd, the candidate better hope she doesn't know the answer.
Infinite loops
4. Infinite loops often arise in embedded systems. How does you code an infinite loop in C?
There are several solutions to this question. My preferred solution is:
while(1)
{
ý
}
Many programmers seem to prefer:
for(;;)
{
ý
}
This construct puzzles me because the syntax doesn't exactly spell out what's going on. Thus, if a candidate gives this as a solution, I'll use it as an opportunity to explore their rationale for doing so. If their answer is basically, "I was taught to do it this way and I haven't thought about it since," it tells me something (bad) about them.
A third solution is to use a goto :
Loop:
...
goto Loop;
Candidates who propose this are either assembly language programmers (which is probably good), or else they are closet BASIC/FORTRAN programmers looking to get into a new field.
Data declarations
5. Using the variable a, give definitions for the following:
a) An integer
b) A pointer to an integer
c) A pointer to a pointer to an integer
d) An array of 10 integers
e) An array of 10 pointers to integers
f) A pointer to an array of 10 integers
g) A pointer to a function that takes an integer as an argument and returns an integer
h) An array of ten pointers to functions that take an integer argument and return an integer
The answers are:
a) int a; // An integer
b) int *a; // A pointer to an integer
c) int **a; // A pointer to a pointer to an integer
d) int a[10]; // An array of 10 integers
e) int *a[10]; // An array of 10 pointers to integers
f) int (*a)[10]; // A pointer to an array of 10 integers
g) int (*a)(int); // A pointer to a function a that takes an integer argument and returns an integer
h) int (*a[10])(int); // An array of 10 pointers to functions that take an integer argument and return an integer
People often claim that a couple of these are the sorts of thing that one looks up in textbooks-and I agree. While writing this article, I consulted textbooks to ensure the syntax was correct. However, I expect to be asked this question (or something close to it) when I'm being interviewed. Consequently, I make sure I know the answers, at least for the few hours of the interview. Candidates who don't know all the answers (or at least most of them) are simply unprepared for the interview. If they can't be prepared for the interview, what will they be prepared for?
Static
6. What are the uses of the keyword static?
This simple question is rarely answered completely. Static has three distinct uses in C:
- A variable declared static within the body of a function maintains its value between function invocations
- A variable declared static within a module, (but outside the body of a function) is accessible by all functions within that module. It is not accessible by functions within any other module. That is, it is a localized global
- Functions declared static within a module may only be called by other functions within that module. That is, the scope of the function is localized to the module within which it is declared
Most candidates get the first part correct. A reasonable number get the second part correct, while a pitiful number understand the third answer. This is a serious weakness in a candidate, since he obviously doesn't understand the importance and benefits of localizing the scope of both data and code.
Const
7. What does the keyword const mean?
As soon as the interviewee says "const means constant," I know I'm dealing with an amateur. Dan Saks has exhaustively covered const in the last year, such that every reader of ESP should be extremely familiar with what const can and cannot do for you. If you haven't been reading that column, suffice it to say that const means "read-only." Although this answer doesn't really do the subject justice, I'd accept it as a correct answer. (If you want the detailed answer, read Saks' columns-carefully!)
If the candidate gets the answer correct, I'll ask him these supplemental questions:
What do the following declarations mean?
const int a;
int const a;
const int *a;
int * const a;
int const * a const;
The first two mean the same thing, namely a is a const (read-only) integer. The third means a is a pointer to a const integer (that is, the integer isn't modifiable, but the pointer is). The fourth declares a to be a const pointer to an integer (that is, the integer pointed to by a is modifiable, but the pointer is not). The final declaration declares a to be a const pointer to a const integer (that is, neither the integer pointed to by a, nor the pointer itself may be modified). If the candidate correctly answers these questions, I'll be impressed. Incidentally, you might wonder why I put so much emphasis on const, since it is easy to write a correctly functioning program without ever using it. I have several reasons:
- The use of const conveys some very useful information to someone reading your code. In effect, declaring a parameter const tells the user about its intended usage. If you spend a lot of time cleaning up the mess left by other people, you'll quickly learn to appreciate this extra piece of information. (Of course, programmers who use const , rarely leave a mess for others to clean up.)
- const has the potential for generating tighter code by giving the optimizer some additional information
- Code that uses const liberally is inherently protected by the compiler against inadvertent coding constructs that result in parameters being changed that should not be. In short, they tend to have fewer bugs
Volatile
8. What does the keyword volatile mean? Give three different examples of its use.
A volatile variable is one that can change unexpectedly. Consequently, the compiler can make no assumptions about the value of the variable. In particular, the optimizer must be careful to reload the variable every time it is used instead of holding a copy in a register. Examples of volatile variables are:
- Hardware registers in peripherals (for example, status registers)
- Non-automatic variables referenced within an interrupt service routine
- Variables shared by multiple tasks in a multi-threaded application
Candidates who don't know the answer to this question aren't hired. I consider this the most fundamental question that distinguishes between a C programmer and an embedded systems programmer. Embedded folks deal with hardware, interrupts, RTOSes, and the like. All of these require volatile variables. Failure to understand the concept of volatile will lead to disaster.
On the (dubious) assumption that the interviewee gets this question correct, I like to probe a little deeper to see if they really understand the full significance of volatile . In particular, I'll ask them the following additional questions:
- Can a parameter be both const and volatile ? Explain.
- Can a pointer be volatile ? Explain.
- What's wrong with the following function?:
int square(volatile int *ptr)
{
return *ptr * *ptr;
}
The answers are as follows:
- Yes. An example is a read-only status register. It is volatile because it can change unexpectedly. It is const because the program should not attempt to modify it
- Yes, although this is not very common. An example is when an interrupt service routine modifies a pointer to a buffer
- This one is wicked. The intent of the code is to return the square of the value pointed to by *ptr . However, since *ptr points to a volatile parameter, the compiler will generate code that looks something like this:
int square(volatile int *ptr)
{
int a,b;
a = *ptr;
b = *ptr;
return a * b;
}
Because it's possible for the value of *ptr to change unexpectedly, it is possible for a and b to be different. Consequently, this code could return a number that is not a square! The correct way to code this is:
long square(volatile int *ptr)
{
int a;
a = *ptr;
return a * a;
}
Bit manipulation
9. Embedded systems always require the user to manipulate bits in registers or variables. Given an integer variable a, write two code fragments. The first should set bit 3 of a. The second should clear bit 3 of a. In both cases, the remaining bits should be unmodified.
These are the three basic responses to this question:
- No idea. The interviewee cannot have done any embedded systems work
- Use bit fields. Bit fields are right up there with trigraphs as the most brain-dead portion of C. Bit fields are inherently non-portable across compilers, and as such guarantee that your code is not reusable. I recently had the misfortune to look at a driver written by Infineon for one of their more complex communications chips. It used bit fields and was completely useless because my compiler implemented the bit fields the other way around. The moral: never let a non-embedded person anywhere near a real piece of hardware!
- Use #defines and bit masks. This is a highly portable method and is the one that should be used. My optimal solution to this problem would be:
#define BIT3 (0x1
<
<
3)
static int a;
void set_bit3(void) {
a |= BIT3;
}
void clear_bit3(void) {
a &= ~BIT3;
}
Some people prefer to define a mask together with manifest constants for the set and clear values. This is also acceptable. The element that I'm looking for is the use of manifest constants, together with the |= and &= ~ constructs
Accessing fixed memory locations
10. Embedded systems are often characterized by requiring the programmer to access a specific memory location. On a certain project it is required to set an integer variable at the absolute address 0x67a9 to the value 0xaa55. The compiler is a pure ANSI compiler. Write code to accomplish this task.
This problem tests whether you know that it is legal to typecast an integer to a pointer in order to access an absolute location. The exact syntax varies depending upon one's style. However, I would typically be looking for something like this:
int *ptr;
ptr = (int *)0x67a9;
*ptr = 0xaa55;
A more obscure approach is:
*(int * const)(0x67a9) = 0xaa55;
Even if your taste runs more to the second solution, I suggest the first solution when you are in an interview situation.
Interrupts
11. Interrupts are an important part of embedded systems. Consequently, many compiler vendors offer an extension to standard C to support interrupts. Typically, this new keyword is __interrupt. The following code uses __interrupt to define an interrupt service routine (ISR). Comment on the code.
__interrupt double compute_area
(double
radius)
{
double area = PI * radius *
radius;
printf("nArea = %f", area);
return area;
}
This function has so much wrong with it, it's hard to know where to start:
- ISRs cannot return a value. If you don't understand this, you aren't hired
- ISRs cannot be passed parameters. See the first item for your employment prospects if you missed this
- On many processors/compilers, floating-point operations are not necessarily re-entrant. In some cases one needs to stack additional registers. In other cases, one simply cannot do floating point in an ISR. Furthermore, given that a general rule of thumb is that ISRs should be short and sweet, one wonders about the wisdom of doing floating-point math here
- In a vein similar to the third point, printf() often has problems with reentrancy and performance. If you missed points three and four, I wouldn't be too hard on you. Needless to say, if you got these last two points, your employment prospects are looking better and better
Code examples
12. What does the following code output and why?
void foo(void)
{
unsigned int a = 6;
int b = -20;
(a+b > 6) ? puts("> 6") :
puts("
<
= 6");
}
This question tests whether you understand the integer promotion rules in C-an area that I find is very poorly understood by many developers. Anyway, the answer is that this outputs "> 6." The reason for this is that expressions involving signed and unsigned types have all operands promoted to unsigned types. Thus ý20 becomes a very large positive integer and the expression evaluates to greater than 6. This is a very important point in embedded systems where unsigned data types should be used frequently (see Reference 2). If you get this one wrong, you are perilously close to not getting the job.
13. Comment on the following code fragment.
unsigned int zero = 0;
unsigned int compzero = 0xFFFF;
/*1's complement of zero */
On machines where an int is not 16 bits, this will be incorrect. It should be coded:
unsigned int compzero = ~0;
This question really gets to whether the candidate understands the importance of word length on a computer. In my experience, good embedded programmers are critically aware of the underlying hardware and its limitations, whereas computer programmers tend to dismiss the hardware as a necessary annoyance.
By this stage, candidates are either completely demoralized-or they're on a roll and having a good time. If it's obvious that the candidate isn't very good, then the test is terminated at this point. However, if the candidate is doing well, then I throw in these supplemental questions. These questions are hard, and I expect that only the very best candidates will do well on them. In posing these questions, I'm looking more at the way the candidate tackles the problems, rather than the answers. Anyway, have fun...
Dynamic memory allocation
14. Although not as common as in non-embedded computers, embedded systems do still dynamically allocate memory from the heap. What are the problems with dynamic memory allocation in embedded systems?
Here, I expect the user to mention memory fragmentation, problems with garbage collection, variable execution time, and so on. This topic has been covered extensively in ESP , mainly by P.J. Plauger. His explanations are far more insightful than anything I could offer here, so go and read those back issues! Having lulled the candidate into a sense of false security, I then offer up this tidbit:
What does the following code fragment output and why?
char *ptr;
if ((ptr = (char *)malloc(0)) ==
NULL)
else
puts("Got a null pointer");
puts("Got a valid pointer");
This is a fun question. I stumbled across this only recently when a colleague of mine inadvertently passed a value of 0 to malloc and got back a valid pointer! That is, the above code will output "Got a valid pointer." I use this to start a discussion on whether the interviewee thinks this is the correct thing for the library routine to do. Getting the right answer here is not nearly as important as the way you approach the problem and the rationale for your decision.
Typedef
15. Typedef is frequently used in C to declare synonyms for pre-existing data types. It is also possible to use the preprocessor to do something similar. For instance, consider the following code fragment:
#define dPS struct s *
typedef struct s * tPS;
The intent in both cases is to define dPS and tPS to be pointers to structure s. Which method, if any, is preferred and why?
This is a very subtle question, and anyone who gets it right (for the right reason) is to be congratulated or condemned ("get a life" springs to mind). The answer is the typedef is preferred. Consider the declarations:
dPS p1,p2;
tPS p3,p4;
The first expands to:
struct s * p1, p2;
which defines p1 to be a pointer to the structure and p2 to be an actual structure, which is probably not what you wanted. The second example correctly defines p3 and p4 to be pointers.
Obscure syntax
16. C allows some appalling constructs. Is this construct legal, and if so what does this code do?
int a = 5, b = 7, c;
c = a+++b;
This question is intended to be a lighthearted end to the quiz, as, believe it or not, this is perfectly legal syntax. The question is how does the compiler treat it? Those poor compiler writers actually debated this issue, and came up with the "maximum munch" rule, which stipulates that the compiler should bite off as big (and legal) a chunk as it can. Hence, this code is treated as:
c = a++ + b;
Thus, after this code is executed, a = 6, b = 7, and c = 12.
->> How is function itoa() written?
->> Who to know whether system uses big Endean or little
Endean format and how to convert among them?
->> What is interrupt latency?
->> What is forward reference w.r.t. pointers in c?
->> How is generic list manipulation function written which
accepts elements of any kind?
->> What is the difference between hard real-time and soft
real-time OS?
->> What is interrupt latency? How can you reduce it?
->> What is the difference between embedded systems and
the system in which rtos is running?
->> How can you define a structure with bit field members?
->> What are the features different in PSOS and VxWorks?
->> How do you write a function which takes 2 arguments - a
byte and a field in the byte and returns the value of the
field in that byte?
->> What are the different storage classes in C?
->> What are the different qualifiers in C?
->> What are the different BSD and SVR4 communication
mechanisms
->> Is java a pure object oriented language? Why?
->> Order of constructor and destructor call in case of multiple
inheritance?
->> Can u have inline virtual functions in a class?
->> When you inherit a class using private keyword which
members of base class are visible to the derived class?
->> What is the output of printf("nabbcdref"); -> ef
#define cat(x,y) x##y concatenates x to y. But
cat(cat(1,2),3) does not expand but gives preprocessor
warning. Why?
->> Can you have constant volatile variable? Yes, you can
have a volatile pointer?
->> Can structures be passed to the functions by value?
->> Why cannot arrays be passed by values to functions?
->> Advantages and disadvantages of using macro and inline
functions?
->> What happens when recursion functions are declared
inline?
->> Scope of static variables?
->> Difference between object oriented and object based
languages?
->> Multiple inheritance - objects contain how many multiply
inherited ancestor?
->> What are the 4 different types of inheritance relationship?
->> How would you find out the no of instance of a class?
->> ++*ip increments what? it increments what ip points to
Operations involving unsigned and signed — unsigned will
be converted to signed a+++b -> (a++)+b
malloc(sizeof(0)) will return — valid pointer main()
fork();fork();fork();printf("hello world"); } — will print 8
times. Array of pts to functions — void (*fptr[10])()
Which way of writing infinite loops is more efficient than
others? there are 3ways.
->> # error — what it does?
Q: Which is the best way to write Loops?
Q: Is Count Down_to_Zero Loop better than Count_Up_Loops?
A: Always, count Down to Zero loops are better.
This is because,at loop termination, comparison to Zero can be optimized by complier. (Eg using SUBS)
Else, At the end of the loop there is ADD and CMP.
Q: What is loop unrolling?
A: Small loops can be unrolled for higher performance, with the disadvantage of increased
codesize. When a loop is unrolled, a loop counter needs to be updated less often and
fewer branches are executed. If the loop iterates only a few times, it can be fully unrolled,
so that the loop overhead completely disappears.
eg:
int countbit1(uint n)
{ int bits = 0;
while (n != 0)
{
if (n & 1) bits++;
n >>= 1;
}
return bits;
}
int countbit2(uint n)
{ int bits = 0;
while (n != 0)
{
if (n & 1) bits++;
if (n & 2) bits++;
if (n & 4) bits++;
if (n & bits++;
n >>= 4;
}
return bits;
}
Q: How does, taking the address of local variable result in unoptimized code?
A: The most powerful optimization for compliler is register allocation. That is it operates the variable from register, than memory. Generally local variables are allocated in registers. However if we take the address of a local variable,compiler will not allocate the variable to register.
Q: How does global variable result in unoptimized code?
A: For the same reason as above, compiler will never put the global variable into register. So its bad.
Q: So how to overcome this problem?
A: When it is necessary to take the address of variables, (for example if they are passed as a
reference parameter to a function). Make a copy of the variable, and pass the address of that copy.
Q: Which is better a char, short or int type for optimization?
A: Where possible, it is best to avoid using char and short as local variables. For the types
char and short the compiler needs to reduce the size of the local variable to 8 or 16 bits
after each assignment. This is called sign-extending for signed variables and zeroextending
for unsigned variables. It is implemented by shifting the register left by 24 or 16
bits, followed by a signed or unsigned shift right by the same amount, taking two
instructions (zero-extension of an unsigned char takes one instruction).
These shifts can be avoided by using int and unsigned int for local variables. This
is particularly important for calculations which first load data into local variables and then
process the data inside the local variables. Even if data is input and output as 8- or 16-bit
quantities, it is worth considering processing them as 32-bit quantities.
Q: How to reduce function call overhead in ARM based systems?
A:
. Try to ensure that small functions take four or fewer arguments. These will not use
the stack for argument passing. It will copied into registers.
· If a function needs more than four arguments, try to ensure that it does a
significant amount of work, so that the cost of passing the stacked arguments is
outweighed.
· Pass pointers to structures instead of passing the structure itself.
· Put related arguments in a structure, and pass a pointer to the structure to
functions. This will reduce the number of parameters and increase readability.
· Minimize the number of long long parameters, as these take two argument words.
This also applies to doubles if software floating-point is enabled.
· Avoid functions with a parameter that is passed partially in a register and partially
on the stack (split-argument). This is not handled efficiently by the current
compilers: all register arguments are pushed on the stack.
· Avoid functions with a variable number of parameters. Varargs functions
Q: What is a pure function in ARM terminology?
A: Pure functions are those which return a result which depends only on their arguments.
They can be thought of as mathematical functions: they always return the same result if
the arguments are the same. To tell the compiler that a function is pure, use the special
declaration keyword __pure.
__pure int square(int x)
{ return x * x;
}
Compiler does optimization for pure functions. For example, the values which are allocated to
memory can be safely cached in registers, instead of being written to memory before a call
and reloaded afterwards.
Q: What are inline functions?
A: The ARM compilers support inline functions with the keyword __inline. This results in
each call to an inline function being substituted by its body, instead of a normal call. This
results in faster code, but it adversely affects code size, particularly if the inline function is
large and used often.
Best Questions for Embedded Programmers
Interview Questions:
1. What are static variables?
2. What are volatile variables?
3. What do you mean by const keyword ?
4. What is interrupt latency?
5. How you can optimize it?
6. What is size of character, integer, integer pointer, character pointer?
7. What is NULL pointer and what is its use?
8. What is void pointer and what is its use?
9. What is ISR?
10.What is return type of ISR?
11.Can we use any function inside ISR?
12.Can we use printf inside ISR?
13.Can we put breakpoint inside ISR?
14.How to decide whether given processor is using little endian format or big endian format ?
15.What is Top half & bottom half of a kernel?
16.Difference between RISC and CISC processor.
17.What is RTOS?
18.What is the difference between hard real-time and soft real-time OS?
19.What type of scheduling is there in RTOS?
20.What is priority inversion?
21.What is priority inheritance?
22.How many types of IPC mechanism you know?
23.What is semaphore?
24.What is spin lock?
25.What is difference between binary semaphore and mutex?
26.What is virtual memory?
27.What is kernel paging?
28.Can structures be passed to the functions by value?
29.Why cannot arrays be passed by values to functions?
30.Advantages and disadvantages of using macro and inline functions?
31.What happens when recursion functions are declared inline?
32.#define cat(x,y) x##y concatenates x to y. But cat(cat(1,2),3) does not expand but gives
preprocessor warning. Why?
33.Can you have constant volatile variable? Yes, you can have a volatile pointer?
34.++*ip increments what? it increments what ip points to
35.Operations involving unsigned and signed — unsigned will be converted to signed
36.malloc(sizeof(0)) will return — valid pointer
37.main() {fork();fork();fork();printf("hello world"); } — will print 8 times.
38.Array of pts to functions — void (*fptr[10])()
39.Which way of writing infinite loops is more efficient than others? there are 3ways.
40.Who to know whether system uses big endian or little endian format and how to convert
among them?
41.What is forward reference w.r.t. pointers in c?
42.How is generic list manipulation function written which accepts elements of any kind?
43.What is the difference between embedded systems and the system in which RTOS is running?
44.How can you define a structure with bit field members?
45.How do you write a function which takes 2 arguments - a byte and a field in the byte and
returns the value of the field in that byte?
46.Which parameters decide the size of data type for a processor ?
47.What is job of preprocessor, compiler, assembler and linker ?
48.What is the difference between static linking and dynamic linking ?
49.How to implement a WD timer in software ?
Data Structures Interview Questions and Answers
What is data structure?
A data structure is a way of organizing data that considers not only the items stored, but also their relationship to each other. Advance knowledge about the relationship between data items allows designing of efficient algorithms for the manipulation of data.
List out the areas in which data structures are applied extensively?
Compiler Design, Operating System, Database Management System, Statistical analysis package, Numerical Analysis, Graphics, Artificial Intelligence, Simulation
If you are using C language to implement the heterogeneous linked list, what pointer type will you use?
The heterogeneous linked list contains different data types in its nodes and we need a link, pointer to connect them. It is not possible to use ordinary pointers for this. So we go for void pointer. Void pointer is capable of storing pointer to any type as it is a generic pointer type.
What is the data structures used to perform recursion?
Stack. Because of its LIFO (Last In First Out) property it remembers its caller, so knows whom to return when the function has to return. Recursion makes use of system stack for storing the return addresses of the function calls. Every recursive function has its equivalent iterative (non-recursive) function. Even when such equivalent iterative procedures are written, explicit stack is to be used.
What are the methods available in storing sequential files ?
Straight merging, Natural merging, Polyphase sort, Distribution of Initial runs.
List out few of the Application of tree data-structure?
The manipulation of Arithmetic expression, Symbol Table construction, Syntax analysis.
In RDBMS, what is the efficient data structure used in the internal storage representation?
B+ tree. Because in B+ tree, all the data is stored only in leaf nodes, that makes searching easier. This corresponds to the records that shall be stored in leaf nodes.
What is a spanning Tree?
A spanning tree is a tree associated with a network. All the nodes of the graph appear on the tree once. A minimum spanning tree is a spanning tree organized so that the total edge weight between nodes is minimized.
Does the minimum spanning tree of a graph give the shortest distance between any 2 specified nodes?
Minimal spanning tree assures that the total weight of the tree is kept at its minimum. But it doesn't mean that the distance between any two nodes involved in the minimum-spanning tree is minimum.
Whether Linked List is linear or Non-linear data structure?
According to Access strategies Linked list is a linear one. According to Storage Linked List is a Non-linear one.
What is the quickest sorting method to use?
The answer depends on what you mean by quickest. For most sorting problems, it just doesn't matter how quick the sort is because it is done infrequently or other operations take significantly more time anyway. Even in cases in which sorting speed is of the essence, there is no one answer. It depends on not only the size and nature of the data, but also the likely order. No algorithm is best in all cases. There are three sorting methods in this author's toolbox that are all very fast and that are useful in different situations. Those methods are quick sort, merge sort, and radix sort.
The Quick Sort
The quick sort algorithm is of the divide and conquer type. That means it works by reducing a sorting problem into several easier sorting problems and solving each of them. A dividing value is chosen from the input data, and the data is partitioned into three sets: elements that belong before the dividing value, the value itself, and elements that come after the dividing value. The partitioning is performed by exchanging elements that are in the first set but belong in the third with elements that are in the third set but belong in the first Elements that are equal to the dividing element can be put in any of the three sets the algorithm will still work properly.
The Merge Sort
The merge sort is a divide and conquer sort as well. It works by considering the data to be sorted as a sequence of already-sorted lists (in the worst case, each list is one element long). Adjacent sorted lists are merged into larger sorted lists until there is a single sorted list containing all the elements. The merge sort is good at sorting lists and other data structures that are not in arrays, and it can be used to sort things that don't fit into memory. It also can be implemented as a stable sort.
The Radix Sort
The radix sort takes a list of integers and puts each element on a smaller list, depending on the value of its least significant byte. Then the small lists are concatenated, and the process is repeated for each more significant byte until the list is sorted. The radix sort is simpler to implement on fixed-length data such as ints.
How can I search for data in a linked list?
Unfortunately, the only way to search a linked list is with a linear search, because the only way a linked list's members can be accessed is sequentially. Sometimes it is quicker to take the data from a linked list and store it in a different data structure so that searches can be more efficient.
What is the heap?
The heap is where malloc(), calloc(), and realloc() get memory.
Getting memory from the heap is much slower than getting it from the stack. On the other hand, the heap is much more flexible than the stack. Memory can be allocated at any time and deallocated in any order. Such memory isn't deallocated automatically; you have to call free().
Recursive data structures are almost always implemented with memory from the heap. Strings often come from there too, especially strings that could be very long at runtime. If you can keep data in a local variable (and allocate it from the stack), your code will run faster than if you put the data on the heap. Sometimes you can use a better algorithm if you use the heap faster, or more robust, or more flexible. Its a tradeoff.
If memory is allocated from the heap, its available until the program ends. That's great if you remember to deallocate it when you're done. If you forget, it's a problem. A �memory leak is some allocated memory that's no longer needed but isn't deallocated. If you have a memory leak inside a loop, you can use up all the memory on the heap and not be able to get any more. (When that happens, the allocation functions return a null pointer.) In some environments, if a program doesn't deallocate everything it allocated, memory stays unavailable even after the program ends.
What is the easiest sorting method to use?
The answer is the standard library function qsort(). It's the easiest sort by far for several reasons:
It is already written.
It is already debugged.
It has been optimized as much as possible (usually).
Void qsort(void *buf, size_t num, size_t size, int (*comp)(const void *ele1, const void *ele2));